BOOTSTRAPPING ROBUST REGRESSION Galen
نویسنده
چکیده
M-estim::ztes The bootstrap principle is justified for robust M-estimates in regression. (A short proof justifying bootstrapping the empirical process is also given.) l.a.
منابع مشابه
A New Robust Bootstrap Algorithm for the Assessment of Common Set of Weights in Performance Analysis
The performance of the units is defined as the ratio of the weighted sum of outputs to the weighted sum of inputs. These weights can be determined by data envelopment analysis (DEA) models. The inputs and outputs of the related (Decision Making Unit) DMU are assessed by a set of the weights obtained via DEA for each DMU. In addition, the weights are not generally common, but rather, they are ve...
متن کاملCan we trust the bootstrap in high-dimension?
We consider the performance of the bootstrap in high-dimensions for the setting of linear regression, where p < n but p/n is not close to zero. We consider ordinary least-squares as well as robust regression methods and adopt a minimalist performance requirement: can the bootstrap give us good confidence intervals for a single coordinate of ? (where is the true regression vector). We show throu...
متن کاملImproving Tests of Abnormal Returns by Bootstrapping the Multivariate Regression Model with Event Parameters
Parametric dummy variable-based tests for event studies using multivariate regression are not robust to nonnormality of the residual, even for arbitrarily large sample sizes. Bootstrap alternatives are described, investigated, and compared for cases where there are nonnormalities, cross-sectional and time series dependencies. Independent bootstrapping of residual vectors from the multivariate r...
متن کاملBootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap
In regression models, appropriate bootstrap methods for inference robust to heteroskedasticity of unknown form are the wild bootstrap and the pairs bootstrap. The finite sample performance of a heteroskedastic-robust test is investigated with Monte Carlo experiments. The simulation results suggest that one specific version of the wild bootstrap outperforms the other versions of the wild bootstr...
متن کاملRobust Bootstrap: an Alternative to Bootstrapping Robust Estimators
• There is a vast literature on robust estimators, but in some situations it is still not easy to make inferences, such as confidence regions and hypothesis testing. This is mainly due to the following facts. On one hand, in most situations, it is difficult to derive the exact distribution of the estimator. On the other one, even if its asymptotic behaviour is known, in many cases, the converge...
متن کامل